Focused Impedance Method (FIM) Innovative medical diagnostics and imaging for health stations in developing countries

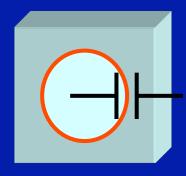
> Professor K Siddique-e Rabbani Dept of Biomedical Physics & Technology, University of Dhaka, Bangladesh

Biological Electrical Resistivity

Body is a fluid

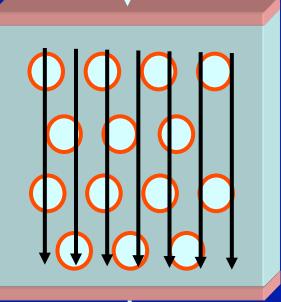
both positive & negative ions move to carry electrical current

Unlike metals, where atoms do not move, only electrons flow


Current pattern in biological tissues

at dc and at low frequency ac: With an insulating membrane, a CELL acts like an insulated object

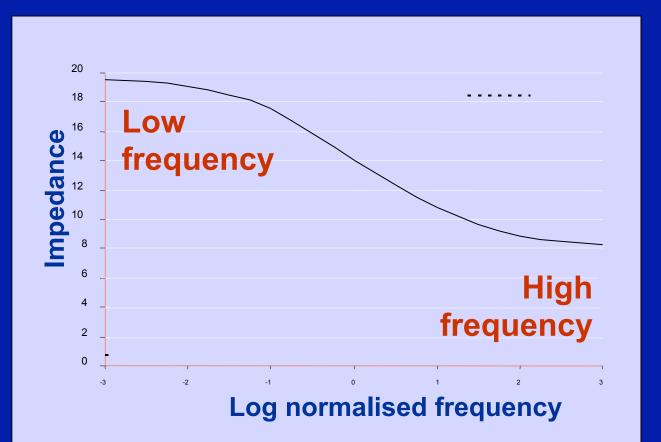
Current bends around the cells


→ High resistance

Current pattern in biological tissues

at high frequency ac:

cell membrane acts as a capacitor sandwitched between conducting fluids, inside and out



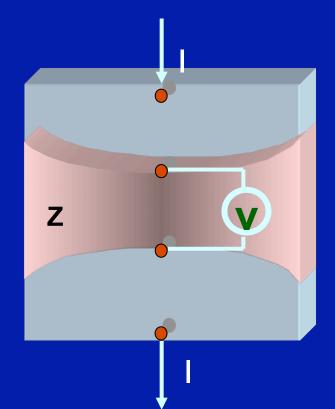
current enters the cells

→ Low resistance

Capacitive reactance α 1/ freq

Impedance (Z) in biological tissues

Capacitive reactance α 1/ freq


Resistence is frequency independent Reactance: frequency dependent Impedance: Resistance + Reactance

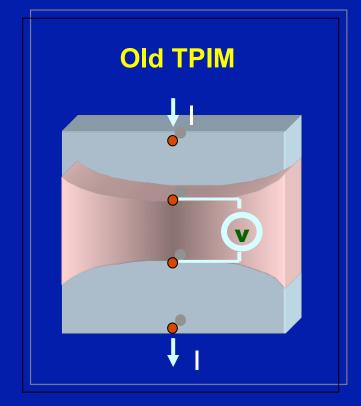
Electrical resistivity of body tissues (at low freq)

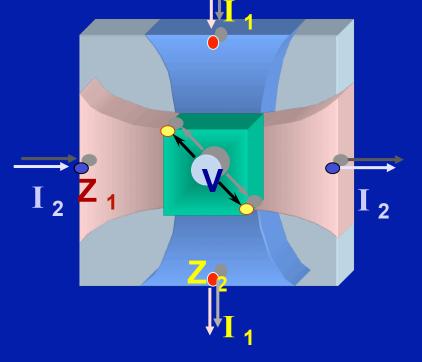
Tissue	(Ω-m)
CSF	0.65
Blood	1.46-1.76
Skeletal muscle (longitudinal)	1.25-3.45
Skeletal muscle (transverse)	6.75-18.0
Lung – full inspiration	17.0
Lung – full expiration	8.0
Brain – grey matter	2.8
Brian – white matter	6.8
Fat	20
Bone	>40

Potential in identifying different types of tissues

Tetra-Polar Electrode Impedance Measurement (TPIM)

Alternating current (I) is passed through outer pair of electrodes, Potential (V) is measured across the inner pair. Impedance of shaded zone, Z = V / IIf I is kept constant, then Z is proportional to V.

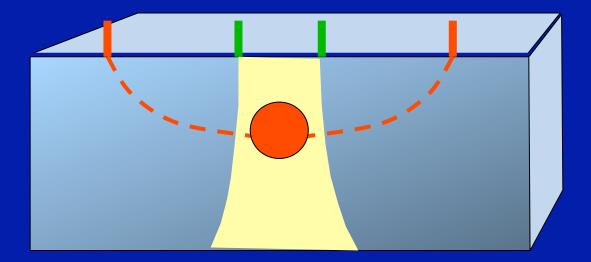

Main advantage: Since voltmeter takes no current, effect of electrode contact impedance is eliminated. Z is that of the bulk region.


Advantage: Simple instrumentation and measurement Disadvantage: Wide zone in volume conductor (not focused)

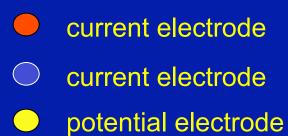
Focused Impedance Method (FIM) (6 electrode)

-a new idea from Biomedical Physics Lab Dhaka University


Current, I_1 and I_2 in two perpendicular directions (in phase, but isolated). Potential, V, measured across two diagonally placed electrodes at centre, V = Z_1+Z_2


 $(Z_1 + Z_2)$ has more contribution from central region (green), hence, 'Focused'

4-Electrode FIM

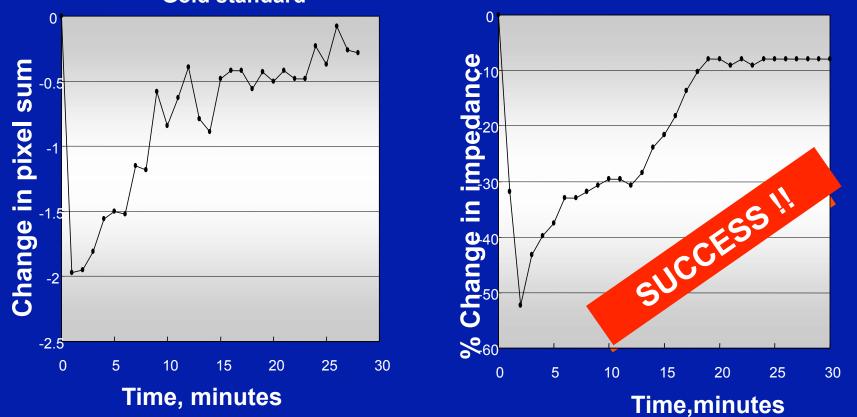

 $Z_1 = V_1 / I_1$ Horizontal sensitive zone $Z_2 = V_2 / I_2$ Vertical sensitive zone

 $Z_1 + Z_2$ gives focused impedance (central green zone is focused) 3D sensitivity allows deeper organ study

Sensitivity Map of FIM (Phantom study)

0	0	0	0.17	0.3	2.6	2.1	1.7	0
0	0	0	- 1.7		3.4	2.6	1.7	0
0	0	- 1.7	- 4.3	- 0.3	6.6	4.8	2.6	2.1
0	- 0.9	- 4.3	\bigcirc	14.7	10.7	6.4	3.4	2.6
1.3		- 0.3	14.7	20.3	15.2	- 0.3	•	0.3
2.6	3.4	6.4	10.7	14.7	\bigcirc	- 4.3	- 0.9	0
2.1	2.6	4.8	6.6	- 0.3	- 4.3	- 1.7	0	0
0	1.7	2.6	3.4		- 1.7	0	0	0
0	1.7	2.1	2.6	0.3	0.17	0	0	0

Focusing evident

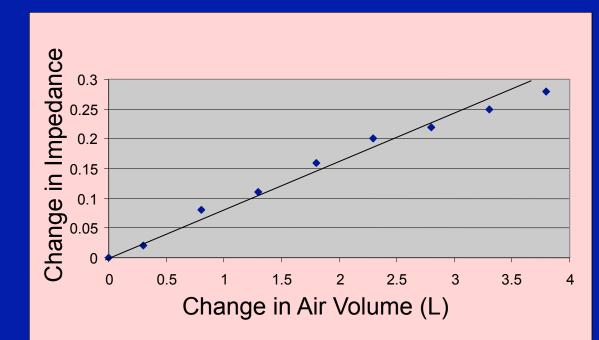

GASTRIC EMPTYING USING FIM

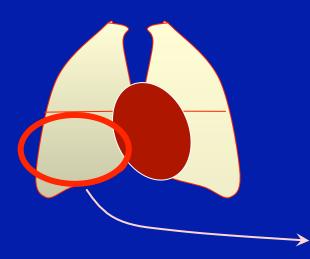
TEST: GASTRIC EMPTYING AFTER A DRINK OF SALINE

FIM

EIT Gold standard

Could eliminate effect of neighbouring dudenum


Lungs ventilation study



Comparison with Spirometric study:

First breathe in, then breathe out a little & hold, volume of air measured using spirometer.

FIM is linearly related to air volume

FIM : potential in Diagnosis and Physiological study

- Study lung ventilation, perfusion and disorders
- Monitor respiration (very useful in artificial respiration)
- Study gastric emptying
- Measure gastric acid secretion
- Measure localized edema
- Measure abdominal fat thickness
- Detection of cervical cancer
- Characterisation of breast tumours benign or malignant ?
- Monitor tissue ablation in cancer therapy; irreversible electroporation using same electrodes
- Do we require high quality imaging to achieve similar diagnoses?

Recommendations

Section 1

Conclusions and Recommendations

- Drastic need for improved communication with health stations.
 - Telemedicine to play a vital role in diagnostics and training.
- Focused impedance method could become an important low cost diagnostic method for Health Stations.