# **Clinical Applications**

- Flat Panel Detectors for Clinical Cone Beam CT
- CMOS Detectors for Breast CT

John M. Boone, Ph.D., FAAPM, FSBI, FACR Professor and Vice Chair of Radiology Professor of Biomedical Engineering University of California Davis

# **Clinical Applications**

• Flat Panel Detectors for Clinical Cone Beam CT

**Cone Beam CT: Benefits and Limitations** Applications Dental / Head SPECT / CT C-arm CT Extremity Radiation Therapy **Breast** CT Summary

#### Multiple Detector CT

64 - 320 detector arrays along z

#### Flat Panel CT

e.q. 768 detector arrays along z









 $N_{\text{modules}} = 1$   $N_{\text{detectors}(1x1)} = 3,145,728$   $N_{\text{detectors}(2x2)} = 786,432$   $t_{\text{readout}} = 33 \text{ ms}$ 

slow readout !

#### Flat Panel CT

e.q. 768 detector arrays along z



Breast CT scanner at UC Davis

greater coverage with higher spatial resolution / single rotation of gantry



Cone Beam CT: Benefits and Limitations motion artifacts / requires pulsed x-ray source



#### **Spatial Resolution: Modeled & Measured MTF's**



Cone Beam CT: Benefits and Limitations cone beam 
— more scattered radiation detection

organ imaging HU accuracy good  $\pm 5 HU$ helical / axial CT imaging bad to very bad cone beam CT imaging ±50 HU

### Clinical Application: Body imaging

#### Small FOV

Large FOV



Full cone beam scan (360°)

Detector-shifted scan cone beam scan (>180°)

• Clinical Applications of Flat Panel Detectors

Cone Beam CT: Benefits and Limitations radiation dose efficiency

dose overlap helical / axial CT imaging cone beam CT imaging

# **Clinical Applications**

• Flat Panel Detectors for Clinical Cone Beam CT



### **Clinical Application: Dental**









ICMP / Brighton, England •14

### Clinical Application: Head (SPECT/CT) Imaging



Clinical Applications of Flat Panel Detectors

ICMP / Brighton, England •15

### Clinical Application: SPECT / CT



25

30

### Clinical Application: SPECT / CT

![](_page_16_Picture_1.jpeg)

![](_page_16_Picture_2.jpeg)

![](_page_16_Picture_3.jpeg)

### Clinical Application: C-arm / Head

#### -Head & Neck / Skull Base—

![](_page_17_Picture_2.jpeg)

Base of Tongue (TORS) –

![](_page_17_Picture_4.jpeg)

#### **Courtesy: Jeff Siewerdsen (Johns Hopkins University)**

#### Neurosurgery

![](_page_17_Picture_7.jpeg)

![](_page_17_Picture_8.jpeg)

![](_page_17_Picture_9.jpeg)

#### Interventional Radiology

![](_page_17_Picture_11.jpeg)

![](_page_17_Picture_12.jpeg)

![](_page_17_Picture_13.jpeg)

### **Clinical Application: Extremity**

![](_page_18_Picture_1.jpeg)

![](_page_18_Picture_2.jpeg)

### **Clinical Application: Extremity**

![](_page_19_Picture_1.jpeg)

### **Clinical Application: Radiation Therapy**

![](_page_20_Picture_1.jpeg)

MV Treatment Beam

#### kV CT Imaging Beam

#### Clinical Application: Radiation Therapy prostate RT positioning images

![](_page_21_Picture_1.jpeg)

Clinical Applications of Flat Panel Detectors

#### **Clinical Application: Breast CT**

![](_page_22_Picture_1.jpeg)

![](_page_22_Picture_2.jpeg)

![](_page_22_Picture_3.jpeg)

![](_page_22_Picture_4.jpeg)

### Clinical Application: Breast CT

![](_page_23_Picture_1.jpeg)

![](_page_24_Picture_0.jpeg)

# **Clinical Applications**

• Flat Panel Detectors for Clinical Cone Beam CT

Cone Beam CT: Benefits and Limitations Applications Dental SPECT / CT C-arm CT Extremity Radiation Therapy **Breast CT** Summary

Summary: Clinical Applications

Flat Panel Detectors for Clinical Cone Beam CT

CBCT has ~isotropic resolution for small FOV apps Dose efficiency is high Scatter levels are higher HU values are typically inaccurate Cone Beam CT has several important niches Special thanks to:

Cari Borras', Ph.D. Jeff Siewerdsen, Ph.D. Robin Stern, Ph.D. J. Anthony Seibert, Ph.D.

![](_page_28_Picture_0.jpeg)

Clinical Applications of Flat Panel Detectors

# **Clinical Applications**

- Flat Panel Detectors for Clinical Cone Beam CT
- CMOS Detectors for Breast CT

John M. Boone, Ph.D., FAAPM, FSBI, FACR Professor and Vice Chair of Radiology Professor of Biomedical Engineering University of California Davis

## **Clinical Applications**

#### CMOS Detectors for Breast CT

![](_page_30_Picture_2.jpeg)

**Breast CT: The basics** 

Breast CT: TFT versus CMOS specifications

Preclinical scanner data

Summary

Clinical Applications of Flat Panel Detectors

ICMP / Brighton, England • 31

#### **Cancer Incidence and Screening**

![](_page_31_Figure_1.jpeg)

![](_page_32_Picture_0.jpeg)

#### Mammography: Standard of Care

![](_page_32_Picture_2.jpeg)

CC

![](_page_32_Picture_4.jpeg)

![](_page_33_Picture_0.jpeg)

## Mammography

![](_page_33_Picture_2.jpeg)

![](_page_34_Picture_0.jpeg)

![](_page_34_Picture_1.jpeg)

![](_page_34_Picture_2.jpeg)

#### Half Cone Beam CT Geometry

![](_page_35_Picture_1.jpeg)

![](_page_36_Picture_0.jpeg)

#### Fabrication of "Doheny", 4th bCT system at UC Davis

![](_page_37_Picture_1.jpeg)

Clinical Applications of Flat Panel Detectors

ICMP / Brighton, England • 38

### CMOS detector mounted on Breast CT scanner (UC Davis)

![](_page_38_Picture_1.jpeg)

![](_page_38_Picture_2.jpeg)

filter and collimator wheels in front of x-ray source

# **Clinical Applications**

CMOS Detectors for Breast CT

**Breast CT: The basics** 

![](_page_39_Picture_3.jpeg)

Preclinical scanner data

Summary

Clinical Applications of Flat Panel Detectors

ICMP / Brighton, England • 40

#### Breast CT: TFT versus CMOS

#### **<u>TFT</u>** Design and Operation

![](_page_40_Figure_2.jpeg)

#### Breast CT: TFT versus CMOS CMOS Design and Operation

![](_page_41_Picture_1.jpeg)

#### detector elements are individually addressable

#### Breast CT: TFT versus CMOS CMOS Design and Operation

![](_page_42_Picture_1.jpeg)

![](_page_42_Picture_2.jpeg)

photomicrograph

29 cm x 23 cm CMOS mosaic of several CMOS units

CMOS is essentially a computer chip

#### Breast CT: TFT versus CMOS Fundamental Comparisons

Thin Film Transistor detector

monolithic amorphous silicon large field of view large dark current levels slower read-out rates not directly addressable CMOS detector

mosaic crystalline silicon chips small field of view low dark current levels faster read-out rates directly addressable

## **Experimental CBCT system**

| PARAMETERS                    | Varian              | Dexela             |
|-------------------------------|---------------------|--------------------|
| X-ray absorber                | aSi/CsI             | CMOS/CsI           |
| Matrix size                   | 2048 × 1536         | 3888 × 3072        |
| Data depth                    | 14 bit              | 14 bit             |
| Intrinsic pixel size          | 194 µm              | 75 µm              |
| Active image area             | $40\times 30\ cm^2$ | $29\times23\ cm^2$ |
| Frame rate at full resolution | 7.5 fps             | 26 fps             |
| Source-to center<br>(SCD)     | 88 cm               | 88 cm              |
| Source-to-<br>detector (SID)  | 135 cm              | 108 cm             |
| Magnification<br>(SID/SCD)    | 1.53                | 1.23               |
| Nominal focal spot size       | 0.3 mm              | 0.3 mm             |
| kVp                           | 80 kVp              | 80 kVp             |

# **Clinical Applications**

CMOS Detectors for Breast CT

**Breast CT: The basics** 

Breast CT: TFT versus CMOS specifications

![](_page_45_Picture_4.jpeg)

Summary

Clinical Applications of Flat Panel Detectors

ICMP / Brighton, England • 46

## **Experimental Setup**

![](_page_46_Picture_1.jpeg)

**Breast phantom** 

#### Modulation Transfer Function (MTF)

![](_page_47_Figure_1.jpeg)

Detective Quantum Efficiency (DQE)

![](_page_48_Figure_1.jpeg)

#### CBCT images of AI wires

#### in air

| Al wire diameter (µm) | 356 | 305 | 279 | 254 | 229 | 203 | 178 | 152 | 127 | 102 | 76 | 51 |
|-----------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|
| TFT                   |     |     |     |     | D   | Ċ,  |     | •   |     |     |    |    |
| CMOS                  |     |     |     | D   | D   |     |     |     | -   | ۲   |    | 4  |

#### in wax

| Al wire diameter | r (µm)  | 356 | 305            | 279 | 254 | 229 | 203 | 178 | 152 | 127 | 102 | 76 | 51 |
|------------------|---------|-----|----------------|-----|-----|-----|-----|-----|-----|-----|-----|----|----|
| TFT              | 3.6mGys | 0   |                | Č,  |     |     |     |     |     |     |     |    |    |
|                  | _       |     |                |     |     |     |     |     |     |     |     |    |    |
| CMOS             |         |     | a. 1000 Sec. 1 |     |     |     |     |     |     |     |     |    |    |
|                  | 3.6mGys | 2   |                |     |     |     |     |     |     |     |     |    |    |

### microcalcification phantoms

![](_page_50_Figure_1.jpeg)

#### Microcalcification visibility vs MGD

![](_page_51_Figure_1.jpeg)

![](_page_51_Figure_2.jpeg)

![](_page_51_Figure_3.jpeg)

### **Spatial Resolution: Modeled & Measured**

![](_page_52_Figure_1.jpeg)

![](_page_52_Figure_2.jpeg)

# **Clinical Applications**

CMOS Detectors for Breast CT

Breast CT: The basics

Breast CT: TFT versus CMOS specifications

Preclinical scanner data

![](_page_53_Picture_5.jpeg)

Clinical Applications of Flat Panel Detectors

## Clinical Applications: Summary • CMOS Detectors for Breast CT

CMOS detectors outperform TFT detectors in terms of: Spatial Resolution Frame Rate Electronic Noise

TFT Detectors are a proven technology in Breast CT

CMOS detectors are being integrated into a Breast CT Research Labs MD Anderson Cancer Center (Chris Shaw) – table top system UC Davis (John Boone) – patient imaging system Special thanks to:

Chris Shaw, Ph.D. Youtao Shen, Ph.D. Chao-Jen Lai, Ph.D. Tianpeng Wang, Ph.D.

**MD** Anderson Cancer Center, Houston TX

Breast CT and CMOS detectors

ICMP / Brighton, England • 56

# **Clinical Applications**

- Flat Panel Detectors for Clinical Cone Beam CT
- CMOS Detectors for Breast CT

John M. Boone, Ph.D., FAAPM, FSBI, FACR Professor and Vice Chair of Radiology Professor of Biomedical Engineering University of California Davis

![](_page_57_Picture_0.jpeg)

Clinical Applications of Flat Panel Detectors

ICMP / Brighton, England •58

C